Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Microbial Community, Newly Sequestered Soil Organic Carbon, and δ15N Variations Driven by Tree Roots.

Identifieur interne : 000023 ( Main/Exploration ); précédent : 000022; suivant : 000024

Microbial Community, Newly Sequestered Soil Organic Carbon, and δ15N Variations Driven by Tree Roots.

Auteurs : Wenchen Song [République populaire de Chine] ; Xiaojuan Tong [République populaire de Chine] ; Yanhong Liu [République populaire de Chine] ; Weike Li [République populaire de Chine]

Source :

RBID : pubmed:32174905

Abstract

Rhizosphere microbes in forests are key elements of the carbon sequestration of terrestrial ecosystems. To date, little is known about how the diversity and species interactions of the active rhizomicrobial community change during soil carbon sequestration and what interactions drive these changes. In this study, we used a combination of DNA and stable isotope method to explore correlations between the composition of microbial communities, N transformation, and the sequestration de novo of carbon in soils around Pinus tabuliformis and Quercus variabilis roots in North China. Rhizosphere soils from degraded lands, primary stage land (tree roots had colonized in degraded soil for 1 year), and nature forest were sampled for analyses. The results showed that microbial communities and newly sequestered soil organic carbon (SOC) contents changed with different tree species, environments, and successive stages. The fungal unweighted and weighted UniFrac distances could better show the different microbial species structures and differences in successive stages. Newly sequestered SOC was positively correlated with the bacterial order Rhizobiales (in P. tabuliformis forests), the fungal order Russulales (in Q. variabilis forests), and δ15N. Consequently, the bacterial order Rhizobiales acted as an important taxa for P. tabuliformis root-driven carbon sequestration, and the fungal order Russulales acted as an important taxa for Q. variabilis root-driven carbon sequestration. The two plant species allocated root exudates to different portion of their root systems, which in turn altered microbial community composition and function. The δ15N of soil organic matter could be an important indicator to estimate root-driven carbon sequestration.

DOI: 10.3389/fmicb.2020.00314
PubMed: 32174905
PubMed Central: PMC7056912


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Microbial Community, Newly Sequestered Soil Organic Carbon, and δ
<sup>15</sup>
N Variations Driven by Tree Roots.</title>
<author>
<name sortKey="Song, Wenchen" sort="Song, Wenchen" uniqKey="Song W" first="Wenchen" last="Song">Wenchen Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tong, Xiaojuan" sort="Tong, Xiaojuan" uniqKey="Tong X" first="Xiaojuan" last="Tong">Xiaojuan Tong</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yanhong" sort="Liu, Yanhong" uniqKey="Liu Y" first="Yanhong" last="Liu">Yanhong Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Weike" sort="Li, Weike" uniqKey="Li W" first="Weike" last="Li">Weike Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32174905</idno>
<idno type="pmid">32174905</idno>
<idno type="doi">10.3389/fmicb.2020.00314</idno>
<idno type="pmc">PMC7056912</idno>
<idno type="wicri:Area/Main/Corpus">000033</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000033</idno>
<idno type="wicri:Area/Main/Curation">000033</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000033</idno>
<idno type="wicri:Area/Main/Exploration">000033</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Microbial Community, Newly Sequestered Soil Organic Carbon, and δ
<sup>15</sup>
N Variations Driven by Tree Roots.</title>
<author>
<name sortKey="Song, Wenchen" sort="Song, Wenchen" uniqKey="Song W" first="Wenchen" last="Song">Wenchen Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Microbiology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tong, Xiaojuan" sort="Tong, Xiaojuan" uniqKey="Tong X" first="Xiaojuan" last="Tong">Xiaojuan Tong</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yanhong" sort="Liu, Yanhong" uniqKey="Liu Y" first="Yanhong" last="Liu">Yanhong Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Weike" sort="Li, Weike" uniqKey="Li W" first="Weike" last="Li">Weike Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Beijing Forestry University, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rhizosphere microbes in forests are key elements of the carbon sequestration of terrestrial ecosystems. To date, little is known about how the diversity and species interactions of the active rhizomicrobial community change during soil carbon sequestration and what interactions drive these changes. In this study, we used a combination of DNA and stable isotope method to explore correlations between the composition of microbial communities, N transformation, and the sequestration
<i>de novo</i>
of carbon in soils around
<i>Pinus tabuliformis</i>
and
<i>Quercus variabilis</i>
roots in North China. Rhizosphere soils from degraded lands, primary stage land (tree roots had colonized in degraded soil for 1 year), and nature forest were sampled for analyses. The results showed that microbial communities and newly sequestered soil organic carbon (SOC) contents changed with different tree species, environments, and successive stages. The fungal unweighted and weighted UniFrac distances could better show the different microbial species structures and differences in successive stages. Newly sequestered SOC was positively correlated with the bacterial order
<i>Rhizobiales</i>
(in
<i>P. tabuliformis</i>
forests), the fungal order Russulales (in
<i>Q. variabilis</i>
forests), and δ
<sup>15</sup>
N. Consequently, the bacterial order
<i>Rhizobiales</i>
acted as an important taxa for
<i>P. tabuliformis</i>
root-driven carbon sequestration, and the fungal order Russulales acted as an important taxa for
<i>Q. variabilis</i>
root-driven carbon sequestration. The two plant species allocated root exudates to different portion of their root systems, which in turn altered microbial community composition and function. The δ
<sup>15</sup>
N of soil organic matter could be an important indicator to estimate root-driven carbon sequestration.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32174905</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Microbial Community, Newly Sequestered Soil Organic Carbon, and δ
<sup>15</sup>
N Variations Driven by Tree Roots.</ArticleTitle>
<Pagination>
<MedlinePgn>314</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.00314</ELocationID>
<Abstract>
<AbstractText>Rhizosphere microbes in forests are key elements of the carbon sequestration of terrestrial ecosystems. To date, little is known about how the diversity and species interactions of the active rhizomicrobial community change during soil carbon sequestration and what interactions drive these changes. In this study, we used a combination of DNA and stable isotope method to explore correlations between the composition of microbial communities, N transformation, and the sequestration
<i>de novo</i>
of carbon in soils around
<i>Pinus tabuliformis</i>
and
<i>Quercus variabilis</i>
roots in North China. Rhizosphere soils from degraded lands, primary stage land (tree roots had colonized in degraded soil for 1 year), and nature forest were sampled for analyses. The results showed that microbial communities and newly sequestered soil organic carbon (SOC) contents changed with different tree species, environments, and successive stages. The fungal unweighted and weighted UniFrac distances could better show the different microbial species structures and differences in successive stages. Newly sequestered SOC was positively correlated with the bacterial order
<i>Rhizobiales</i>
(in
<i>P. tabuliformis</i>
forests), the fungal order Russulales (in
<i>Q. variabilis</i>
forests), and δ
<sup>15</sup>
N. Consequently, the bacterial order
<i>Rhizobiales</i>
acted as an important taxa for
<i>P. tabuliformis</i>
root-driven carbon sequestration, and the fungal order Russulales acted as an important taxa for
<i>Q. variabilis</i>
root-driven carbon sequestration. The two plant species allocated root exudates to different portion of their root systems, which in turn altered microbial community composition and function. The δ
<sup>15</sup>
N of soil organic matter could be an important indicator to estimate root-driven carbon sequestration.</AbstractText>
<CopyrightInformation>Copyright © 2020 Song, Tong, Liu and Li.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Wenchen</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Xiaojuan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yanhong</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Forest Resources and Ecosystem Processes of Beijing, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Weike</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Beijing Forestry University, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">13C isotopic tracing</Keyword>
<Keyword MajorTopicYN="N">15N isotopic tracing</Keyword>
<Keyword MajorTopicYN="N">carbon sequestration</Keyword>
<Keyword MajorTopicYN="N">microbial community</Keyword>
<Keyword MajorTopicYN="N">plant–soil interactions</Keyword>
<Keyword MajorTopicYN="N">tree roots</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32174905</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.00314</ArticleId>
<ArticleId IdType="pmc">PMC7056912</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Chim Acta. 2017 Mar 1;956:1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28093120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 Aug;6(8):1621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 May;198(3):656-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23521345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Sep;8(9):1904-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24722629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Feb 08;8:14349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28176768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 27;515(7528):505-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25428498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Sep 16;353(6305):1272-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27634532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2016 Jan 15;541:230-237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26410698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Aug 19;333(6045):988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21764754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2018 Dec 16;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30554462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2018 Jan;24(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28752603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Aug;25(8):468-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20557974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1615-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Feb 06;5:8280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25655192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2009 Sep;69(3):329-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jan;201(1):31-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23952258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 29;339(6127):1528-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23539585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2016 Oct;41:9-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27019410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jul 11;2:16107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27398907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Oct;11(10):2294-2304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28585935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Jan;565(7739):280-282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30644447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jan 19;5:7854</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25598010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Mar 12;5(3):e9672</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20300637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2013 Jun;7(6):1069-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23426008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Feb 20;10:307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30842767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2017 Aug 30;7(19):7965-7974</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29043048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2013 Jul;56(7):661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23722235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2015 May;69(4):914-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25687126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(1):41-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1996 Oct;108(2):207-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2014 Apr 03;10(4):e1003531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24699258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Aug 22;10:1937</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31507556</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Song, Wenchen" sort="Song, Wenchen" uniqKey="Song W" first="Wenchen" last="Song">Wenchen Song</name>
</noRegion>
<name sortKey="Li, Weike" sort="Li, Weike" uniqKey="Li W" first="Weike" last="Li">Weike Li</name>
<name sortKey="Liu, Yanhong" sort="Liu, Yanhong" uniqKey="Liu Y" first="Yanhong" last="Liu">Yanhong Liu</name>
<name sortKey="Song, Wenchen" sort="Song, Wenchen" uniqKey="Song W" first="Wenchen" last="Song">Wenchen Song</name>
<name sortKey="Tong, Xiaojuan" sort="Tong, Xiaojuan" uniqKey="Tong X" first="Xiaojuan" last="Tong">Xiaojuan Tong</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000023 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000023 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32174905
   |texte=   Microbial Community, Newly Sequestered Soil Organic Carbon, and δ15N Variations Driven by Tree Roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32174905" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020